ABE-IPSABE HOLDINGABE BOOKS
English Polski
On-line access

Bookstore

0.00 PLN
Bookshelf (0) 
Your bookshelf is empty
Applications of Synchrotron Radiation

Applications of Synchrotron Radiation

Authors
Publisher Springer Netherlands
Year
Pages 400
Version paperback
Language English
ISBN 9789401066648
Categories Analytical chemistry
Delivery to

check shipping prices
Ask about the product
Email
question
  Send
Add to bookshelf

Book description

Synchrotron radiation became available in a routine and regular manner to the scientific community in the early 1980s. Since that time the use of techniques employing synchrotron radiation has proliferated, so that the unique properties of this form ofelectromagnetic radiation are now having a major impact on several areas of physical and biological sciences. Not only have several new techniques become available but new opportunities with existing methodologies, e.g. diffraction, have been opened up. In this book we providea surveyofsomeofthemostimportantapplications ofsynchrotron radiation, with astrongemphasison the fields ofchemistry and materials science. An introduction to the properties of the radiation and its instrumentation is given in chapter 1. The following chapters describe the use ofsynchrotron radiation in high resolution powder diffraction for structural studies of crystalline materials and in diffraction topography for imaging defects in single crystals. The role of EXAFS in investigations of amorphous and disordered crystalline solids and ofbiological systems is highlighted. The important enhancements to surface science techniques offered by synchrotron radiation are then reviewed. Later chapters describe more specialist applic ations, including trace-element analysis, protein crystallography, X-ray microscopy, and atomic and molecular spectroscopy.

Applications of Synchrotron Radiation

Table of contents

1 Synchrotron radiation instrumentation.- 1.1 Introduction.- 1.2 Synchrotron radiation sources.- 1.2.1 Collimation, intensity and polarisation.- 1.2.2 Brilliance and time structure.- 1.2.3 Insertion devices.- 1.3 Mirror optics.- 1.3.1 Total external reflection.- 1.3.2 Toroids and cylinders.- 1.3.3 Filters and windows.- 1.3.4 Multilayers.- 1.4 Monochromators.- 1.4.1 Crystal monochromators.- 1.4.2 Grating monochromators.- 1.5 Detectors.- 1.5.1 Low energy resolution detectors.- 1.5.2 Detectors with high energy resolution.- 1.5.3 Photoelectron analysers.- 1.5.4 Multidetectors.- 1.6 Experimental layouts.- 1.6.1 X-ray absorption spectroscopy.- 1.6.2 X-ray diffraction.- 1.6.3 UV photoemission.- References.- 2 X-ray diffraction from powders and crystallites.- 2.1 Introduction.- 2.2 X-ray diffraction: basic features.- 2.3 Synchrotron radiation and powder diffraction.- 2.4 Instrumentation.- 2.4.1 Angle dispersive scans.- 2.4.2 Energy dispersive studies.- 2.5 Applications.- 2.5.1 High resolution powder diffraction.- 2.5.2 Time-resolved (or kinetic) crystallography.- 2.5.3 High pressure studies.- 2.5.4 Anomalous dispersion studies.- 2.5.5 Studies of surface films.- 2.6 Single crystal studies.- 2.6.1 Microcrystalline diffraction.- 2.6.2 Laue methodologies.- 2.7 Summary and conclusion.- References.- 3 X-ray topography.- 3.1 Introduction.- 3.2 Dispersion and absorption according to the dynamical theory of X-ray diffraction: an overview.- 3.3 Topographic techniques and contrast formation mechanisms.- 3.3.1 Integrated intensity techniques.- 3.3.2 Pseudo plane wave techniques.- 3.4 Crystal growth defects.- 3.5 Dislocation analysis: integrated intensity techniques.- 3.6 Dislocation analysis and strain mapping: plane wave imaging.- 3.7 From the analysis of one-dimensional strains to the precise location of impurity atoms.- 3.8 Applications of X-ray topography to the study of solid state reactions.- 3.9 Conclusion.- References.- 4 Small angle X-ray scattering and the study of microemulsions.- 4.1 Introduction.- 4.2 SAXS hardware requirements.- 4.2.1 Monochromator.- 4.2.2 Collimation.- 4.3 Experiments on AOT microemulsions.- 4.3.1 High angle limit.- 4.3.2 Scattering from practical systems.- References.- 5 Time-resolved small angle X-ray scattering on polymers.- 5.1 Introduction.- 5.2 SAXS and polymers.- 5.3 Time-resolved SAXS in polymer crystallisation and annealing.- 5.4 Model polymers: ultra-long n.- 5.5 Phase separation in liquid polymer mixtures.- 5.6 Simultaneous diffraction and calorimetry experiments.- References.- 6 EXAFS and structural studies of glasses.- 6.1 Introduction.- 6.2 Basic principles of EXAFS.- 6.2.1 The EXAFS function.- 6.2.2 Structural information in EXAFS.- 6.3 EXAFS data analysis.- 6.3.1 Real space analysis.- 6.3.2 k-space analysis.- 6.4 The structure of oxide glasses.- 6.4.1 Network modifiers in silicate glasses.- 6.4.2 Intermediates in silicate glasses.- 6.4.3 Alkali germanate glasses.- 6.4.4 Corrosion studies of silicate glasses.- References.- 7 EXAFS studies of ionically conducting solids.- 7.1 Introduction.- 7.2 Ionic conductivity in solids.- 7.3 Silver iodide.- 7.4 Rare-earth doped alkaline earth fluorides.- 7.5 Cubic stabilised zirconia and bismuth oxide.- 7.5.1 Cubic stabilised ZrO2.- 7.5.2 Rare-earth doped bismuth oxide.- 7.6 Mixed fluorides.- 7.7 Polymer electrolytes.- 7.8 Summary.- References.- 8 Applications of EXAFS to the study of metal catalysts.- 8.1 Introduction.- 8.2 Sampling methods.- 8.3 Homogeneous transition metal catalysts.- 8.4 Surface organometallic species.- 8.5 Oxide supported metal ion sites.- 8.6 Oxide supported metallic catalysts.- 8.7 Oxide supported alloy catalysts.- 8.8 Concluding comments.- References.- 9 Looking at solid surfaces with synchrotron radiation.- 9.1 Introduction.- 9.2 Surface science: the tools.- 9.3 Advantages of the synchrotron source.- 9.4 Photoemission.- 9.4.1 Valence level photoemission.- 9.4.2 Angle resolved photoemission.- 9.4.3 Core level photoemission.- 9.5 X-ray absorption spectroscopy.- 9.5.1 Surface EXAFS.- 9.5.2 X-ray standing waves.- 9.5.3 NEXAFS.- 9.6 X-ray diffraction from surfaces.- References.- 10 Protein crystallography.- 10.1 Introduction.- 10.2 Instrumentation for protein crystallography.- 10.2.1 X-ray optics.- 10.2.2 Detectors.- 10.3 Use of the high intensity and collimation of synchrotron radiation in protein crystallography.- 10.3.1 Fundamentals of the protein crystallographic technique.- 10.3.2 Reduction of radiation damage.- 10.3.3 Large unit cells: virus crystallography.- 10.3.4 Small sample volume.- 10.4 Anomalous scattering and phase determination.- 10.4.1 Multiple wavelength anomalous diffraction methods.- 10.5 Time-resolved crystallography.- 10.5.1 Laue crystallography.- 10.5.2 Time-resolved studies of the phosphorylase enzyme.- 10.5.3 Structural transitions in insulin.- 10.5.4 100 ps data collection.- 10.6 Synchrotron radiation and diffuse scattering from protein crystals.- 10.7 Conclusions and future directions.- References.- 11 X-ray absorption spectroscopy of biological molecules.- 11.1 Introduction.- 11.2 Experimental aspects.- 11.3 Information content of an X-ray absorption spectrum.- 11.3.1 The position of an absorption edge.- 11.3.2 Pre-edge and/or edge features.- 11.3.3 XANES and EXAFS.- 11.4 Applications.- 11.4.1 Metallothioneins.- 11.4.2 Zinc centres in proteins.- 11.4.3 Manganese in photosystem II.- 11.4.4 Oxomolybdoenzymes.- 11.4.5 Molybdenum nitrogenases.- 11.4.6 Vanadoenzymes.- 11.5 XAS and protein crystallography.- References.- 12 X-ray microscopy.- 12.1 Introduction.- 12.2 X-ray optical systems.- 12.3 Methods of zone plate fabrication.- 12.4 X-ray microscope designs.- 12.4.1 Source brilliance.- 12.4.2 Monochromators.- 12.4.3 Scanning versus fixed beam arrangements.- 12.5 Applications of X-ray focussing microscopes.- 12.5.1 X-ray contrast.- 12.5.2 Time-dependent imaging.- 12.6 Contact X-ray microscopy.- 12.6.1 Geometrical considerations.- 12.6.2 Photoresist.- 12.6.3 Applications.- 12.7 Future developments.- 12.7.1 Sources and optics.- 12.7.2 Phase contrast and holographic microscopy.- 12.8 Conclusion.- References.- 13 Synchrotron radiation trace element analysis.- 13.1 Introduction.- 13.2 The development of accelerator-based techniques.- 13.3 The use of synchrotron radiation.- 13.3.1 The sensitivity of SXRF.- 13.3.2 The detection limits of SXRF.- 13.3.3 Radiation damage.- 13.3.4 Concentration assignment using SXRF.- 13.4 Applications of synchrotron X-ray fluorescence.- 13.5 Total reflection.- 13.6 Spatial resolved SXRF.- 13.6.1 The focussing of X-rays.- 13.6.2 Experimental work with synchrotron microprobes.- 13.7 Conclusions.- References.- 14 Atomic and molecular science.- 14.1 Introduction.- 14.2 Photo-electron spectroscopy.- 14.3 Photo-ion spectroscopy.- 14.4 Fluorescence spectroscopy.- 14.5 Conclusion.- References.- 15 Time-resolved spectroscopy.- 15.1 Introduction.- 15.2 Principles of fluorescence polarisation.- 15.2.1 General expressions.- 15.2.2 Membrane systems.- 15.2.3 Excitation with horizontally polarised light.- 15.2.4 Determination of F(t).- 15.3 Experimental methods and instrumentation.- 15.3.1 The single photon counting method.- 15.3.2 Experimental set-up and methods.- 15.4 Numerical analysis.- 15.5 Results.- 15.5.1 The initial anisotropy r(0).- 15.5.2 The orientational order.- 15.5.3 Reorientational dynamics.- 15.6 The future.- References.

We also recommend books

Strony www Białystok Warszawa
801 777 223